Magazine DSI HS

Voir l’invisible. Les technologies de contre-furtivité

Particulièrement vulnérables face aux attaques des bombardiers B‑2, les Chinois se sont investis de manière considérable sur ce segment. Car si les F‑22 et F‑35 ont subi d’importants travaux pour réduire leur signature infrarouge, cette discrétion thermique ne serait effective qu’entre 7 et 8 μm… Depuis 2015, la société A‑Star présente son catalogue de caméras SWIR sur les salons d’armement des « pays amis » pour équiper les plates-­formes aériennes, navales et terrestres réalisées par la BITD chinoise.

Mais la détection des bombardiers furtifs américains fait, elle, l’objet d’une approche en réseau. Tout d’abord, un satellite de reconnaissance géostationnaire large champ et doté d’un capteur SWIR, le Gaofeng‑5, surveille la mer de Chine depuis mai 2018. Ensuite, un maillage composé de navires et d’aéronefs de surveillance dotés de ces capteurs prendra le relais pour confirmer la menace jusqu’à une portée de 150 km (grâce au rayonnement thermique des tuyères) et orienter les avions d’interception. Les nouveaux chasseurs de cinquième génération chinois J‑20 sont eux aussi désormais équipés de l’EOTS‑86, un IRST doté d’un système de capteurs SWIR disséminés sur le fuselage de l’appareil pour offrir un champ de vision de 720°. Il pourra alors s’appuyer sur les missiles de courte portée PL‑10 à guidage infrarouge. Le recours à cette « killing chain SWIR », permet ainsi à l’appareil d’éviter l’emploi de son radar de conduite de tir pour échapper à la détection et aux dispositifs de guerre électronique adverses.

Les pistes térahertz et quantique

L’Institut d’optique de Saint-­Pétersbourg (ITMO) et plusieurs acteurs de la BITD chinoise (SASTIND, CNIGC, CEAP, CASIC, CETC) ont au cours des derniers mois communiqué sur la réalisation de nouveaux capteurs aéroportés qui seraient à même d’imager la forme des avions furtifs, de révéler les parties métalliques dissimulées sous les matériaux absorbants, mais aussi de pénétrer la couverture végétale et les infrastructures pour détecter troupes et matériels. Située entre les micro-­ondes et l’infrarouge, cette nouvelle génération de senseurs émet des photons (300 GHz à 3 THz) à partir d’un laser hélium-­néon. Comme pour le SWIR, il s’agit d’une technologie financée de longue date par les États-­Unis. En 2012, une équipe américaine de l’Institut d’optique de Rochester a publié dans la revue Applied Physics Letters le compte rendu d’expériences en laboratoire destinées à démontrer la faisabilité d’un système d’imagerie de ce type. L’article était d’ailleurs illustré par une image de B‑2 reconstituée grâce à ce système (4). Mais les capacités d’absorption par l’atmosphère de ces lasers et l’énergie nécessaire à leur fonctionnement les destineraient à être intégrés dans un premier temps sur des plates-­formes de surveillance du champ de bataille disposant d’au moins quatre moteurs.

Ainsi, en décembre 2018, un mois après la présentation au public, lors du salon de Zhuhai, du « radar quantique » (5) réalisé par CETC, l’Institut de recherche 23 du groupe CASIC, procédait aux premiers essais en vol d’un radar SAR térahertz sur un avion Y‑8 rattaché à la 20e division chargée de la surveillance du champ de bataille. Mais, à terme, l’objectif consiste, tant pour les Russes que pour les Chinois, à doter les avions de chasse de cette capacité de ciblage. L’électronicien russe KRET travaillerait d’ores et déjà sur un tel prototype destiné au Su‑57.

La multitude de ces innovations fait du nouveau bombardier stratégique B‑21 américain un programme prioritaire pour le Pentagone, malgré un coût qui pourrait atteindre 80 milliards de dollars. Un coût qui semble se justifier en raison de la centaine de plates-­formes qui sera produite, mais surtout au regard de l’ampleur des défis technologiques auxquels son concepteur, Northrop Grumman, est d’ores et déjà confronté, tout comme les industriels européens engagés dans les programmes FCAS et Tempest. 

Notes

(1) Le monitoring réalisé par les radioamateurs actifs sur les réseaux sociaux démontre que le Danemark, la Turquie, l’Allemagne et Israël disposeraient également de radars OTH, ainsi que le Royaume-Uni à Chypre.

(2) « Jindalee Over The Horizon Radar », Engineering Heritage Australia Magazine, vol. 2, no 3, juillet 2016, p. 5.

(3) Yannick Genty-Boudry, « Vers la fin de la furtivité ? », Air & Cosmos, 7 décembre 2018.

(4) Un institut qui est désormais dirigé par le Sino-­Américain Xi Cheng Zhang, ancien directeur de recherche au sein d’ITMO, et par l’Indo-­Américain Anil Malik.

(5) Ce dernier est fondé sur le principe d’intrication, notamment découvert par le Français Alain Aspect, et utilisé en cryptographie quantique. Si un photon émis par ce radar interagit avec un objet ou est absorbé, le photon auquel il est apparié et qui, lui, n’est pas émis, subira les mêmes modifications de son champ énergétique, et ce quelle que soit la distance qui le sépare du premier.

Légende de la photo en première page : Le B-2 est l’exemple type de l’appareil qui a rapidement motivé le développement de systèmes de lutte contre la furtivité. (© DoD)

Article paru dans la revue DSI hors-série n°66, « Aviation de combat : Nouveaux chasseurs, nouveau contexte  », juin-juillet 2019.

Bienvenue sur Areion24.news,
le portail d'information dédié aux relations internationales et aux questions de Défense des publications d'Areion Group. Ce site regroupe une sélection d'articles et d'entretiens rédigés par des spécialistes des questions géopolitiques et stratégiques publiés dans nos différents magazines.

Votre panier